Encoding categorical variables - binary
Take a look at the hiking dataset. There are several columns here that need encoding before they can be modeled, one of which is the Accessible column. Accessible is a binary feature, so it has two values, Y or N, which need to be encoded into 1's and 0's. Use scikit-learn's LabelEncoder method to perform this transformation.
Diese Übung ist Teil des Kurses
Preprocessing for Machine Learning in Python
Anleitung zur Übung
- Store
LabelEncoder()in a variable namedenc. - Using the encoder's
.fit_transform()method, encode thehikingdataset's"Accessible"column. Call the new columnAccessible_enc. - Compare the two columns side-by-side to see the encoding.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Set up the LabelEncoder object
enc = ____
# Apply the encoding to the "Accessible" column
____ = ____.____(____)
# Compare the two columns
print(____[[____, ____]].head())