Checking for correlated features
You'll now return to the wine dataset, which consists of continuous, numerical features. Run Pearson's correlation coefficient on the dataset to determine which columns are good candidates for eliminating. Then, remove those columns from the DataFrame.
Diese Übung ist Teil des Kurses
Preprocessing for Machine Learning in Python
Anleitung zur Übung
- Print out the Pearson correlation coefficients for each pair of features in the
winedataset. - Drop any columns from
winethat have a correlation coefficient above 0.75 with at least two other columns.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Print out the column correlations of the wine dataset
print(____)
# Drop that column from the DataFrame
wine = wine.____(____, ____)
print(wine.head())