Colors
The code you've written up to now is available in the script.
The next step is making the plot more colorful! To do this, a list col has been created for you. It's a list with a color for each corresponding country, depending on the continent the country is part of.
How did we make the list col you ask? The Gapminder data contains a list continent with the continent each country belongs to. A dictionary is constructed that maps continents onto colors:
dict = {
'Asia':'red',
'Europe':'green',
'Africa':'blue',
'Americas':'yellow',
'Oceania':'black'
}
Nothing to worry about now; you will learn about dictionaries in the next chapter.
Diese Übung ist Teil des Kurses
Intermediate Python
Anleitung zur Übung
- Add
c = colto the arguments of theplt.scatter()function. - Change the opacity of the bubbles by setting the
alphaargument to0.8insideplt.scatter(). Alpha can be set from zero to one, where zero is totally transparent, and one is not at all transparent.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Specify c and alpha inside plt.scatter()
plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2)
# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000,10000,100000], ['1k','10k','100k'])
# Show the plot
plt.show()